IIT People Search

Domenica Convertino

Post Doc
2D Materials Engineering
Phone
Research center
About

Domenica Convertino is a Post-Doc at the Center for Nanotechnology Innovation (CNI) of the Italian Institute of Technology (IIT) in Pisa.

She received her Master Degree in Biomedical Engineering from Politecnico di Torino, Italy, in 2012, with the thesis "Generation of hydrogel microcarriers with varying stiffness by using droplet-based microfluidics".  During her master she spent 6 months at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, in the Laboratory of Stem Cell Bioengineering under the direction of prof. Matthias Lütolf. 

She joined the CNI as fellow in 2013, where she got experience in 2D materials synthesis (i.e. graphene and transition metal dichalcogenides), transfer and characterization (SEM, AFM, Raman).

In 2020, she obtained her PhD degree in Biophysical Sciences from Scuola Normale Superiore, Italy, with the thesis “Interfacing graphene with peripheral neurons: influence on neurite outgrowth and NGF axonal transport “.

Her research focuses on the interactions of 2D materials and neural cells for peripheral nerve regeneration applications, by applying viability and differentiation assays, light and fluorescent microscopy, and structural and nano-resolved analysis.

Education

Title: PhD in Biophysical Sciences
Institute: Scuola Normale Superiore
Location: Pisa
Country: Italy
From: 2014 To: 2018

Title: M. Sc. in Biomedical Engineering
Institute: Politecnico di Torino
Location: Torino
Country: Italia
From: 2010 To: 2012

Title: Master student
Institute: École Polytechnique Fédérale de Lausanne (EPFL)
Location: Lausanne
Country: Switzerland
From: 2012 To: 2012

Experience External

Title: External collaborator
Institute: Università di Pisa, Dipartimento di Biologia
Location: Pisa
Country: Italy
From: 2020 To: 2020

Top Publications
2022
Convertino D., Marchetti L., Coletti C.
Graphene on SiC: A platform for spinal cord repair studies
SILICON CARBIDE TECHNOLOGY FOR ADVANCED HUMAN HEALTHCARE APPLICATIONS, Publisher: Elsevier
Book Chapter Book
2021
Pace S., Martini L., Convertino D., Keum H.D., Forti S., Pezzini S., Fabbri F., Miseikis V., Coletti C.
Synthesis of Large-Scale Monolayer 1T′-MoTe2 and Its Stabilization via Scalable hBN Encapsulation
ACS Nano
2020
Convertino D., Mishra N., Marchetti L., Calvello M., Viegi A., Cattaneo A., Fabbri F., Coletti C.
Effect of Chemical Vapor Deposition WS2 on Viability and Differentiation of SH-SY5Y Cells
Frontiers in Neuroscience, vol. 14
2020
Convertino D., Fabbri F., Mishra N., Mainardi M., Cappello V., Testa G., Capsoni S., Albertazzi L., Luin S., Marchetti L., Coletti C.
Graphene promotes axon elongation through local stall of nerve growth factor signaling endosomes
Nano Letters, vol. 20, (no. 5), pp. 3633-3641
2018
Convertino D., Luin S., Marchetti L., Coletti C.
Peripheral neuron survival and outgrowth on graphene
Frontiers in Neuroscience, vol. 12, (no. JAN)
All Publications
2023
Falconieri A., De Vincentiis S., Cappello V., Convertino D., Das R., Ghignoli S., Figoli S., Luin S., Català-Castro F., Marchetti L., Borello U., Krieg M., Raffa V.
Axonal plasticity in response to active forces generated through magnetic nano-pulling
Cell Reports, vol. 42, (no. 1)
2023
Khaustov V.O., Convertino D., Koster J., Zakharov A.A., Mohn M.J., Gebeyehu Z.M., Martini L., Pace S., Marini G., Calandra M., Kaiser U., Forti S., Coletti C.
Heterocontact-Triggered 1H to 1T′ Phase Transition in CVD-Grown Monolayer MoTe2: Implications for Low Contact Resistance Electronic Devices
ACS Applied Nano Materials
2023
Orlandini G., Brunbauer F. M., Coletti C., Convertino D., Doser M., Floethner K. J., Janssens D., Lisowska M., Mishra N., Oliveri E., Ropelewski L., Scharenberg L., Starke U., van Stenis M., Utrobicic A., Veenhof R.
Integration of CVD graphene in gaseous electron multipliers for high energy physics experiments
Journal of Instrumentation, vol. 18, (no. 06), pp. C06022
Article Journal
2023
Convertino D., Marchetti L., Coletti C.
Interaction of graphene and WS2 with neutrophils and mesenchymal stem cells: implications for peripheral nerve regeneration
NanoInnovation Conference & Exhibition
Poster Conference
2023
Ferrera M., Sharma A., Milekhin I., Pan Y., Convertino D., Pace S., Orlandini G., Peci E., Ramò L., Magnozzi M., Coletti C., Salvan G., Zahn D. R. T., Canepa M., Bisio F.
Local dielectric function of hBN-encapsulated WS2 flakes grown by chemical vapor deposition
Journal of Physics: Condensed Matter, vol. 35, (no. 27), pp. 274001
Article Journal